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Abstract. The mass transfer from a finite-length strip near a two-dimensional, oscillating stagnation-point flow in
an incompressible, Newtonian fluid is considered. The problem is investigated using a combination of asymptotic
and numerical methods. The aim of the study is to determine the effect of the location of the strip, relative to
the time-averaged position of the stagnation point, on the mass transfer into the fluid. The study is motivated by
the problem of mass transfer from an injured region of the arterial wall into the blood, a process that may be of
considerable importance in atherogenesis. For physiologically realistic parameter values, it is found that the fluid
flow is quasi-steady, but the mass transfer exhibits genuine time-dependence and a high-frequency asymptotic
solution provides an accurate prediction of the time-average mass transfer. In this regime, there is a significant
reduction in mass transfer when the centre of the strip is located at the point of zero time-averaged wall shear rate,
or equivalently wall shear stress, which may serve to explain, at least partially, the correlation between arterial
disease and regions of low wall shear stress.

1. Introduction

It is generally acknowledged that the development of diseases such as intimal hyperplasia
and atherosclerosis are strongly affected by the temporal and spatial distribution of the shear
stress exerted on the arterial walls by the movement of the blood. Sites that are exposed to
low wall shear stress, such as those near stagnation points, appear to be particularly prone
to the development of such diseases [1–3]. In the cardiovascular system, stagnation points
occur naturally near the re-attachment lines of regions of separated flow (e.g., in the carotid
sinus and downstream of stenoses), but may also be located opposite end-to-side anastomoses
introduced into the system as a consequence of arterial bypass surgery. The pulsatile blood
flow through the arteries not only causes an oscillation in the magnitude of the incoming
velocity (strength), but also causes oscillations in the spatial location of such stagnation points.

Hazel and Pedley [4] considered a simple model of a spatially-oscillating stagnation-point
flow and found that the interaction between the oscillations in position and strength could lead
to a displacement of the point of zero mean wall shear stress away from the centre of positional
oscillations: an effect analogous to acoustic, or steady, streaming. The change in the mean
wall-shear-stress distribution, caused by the introduction of time-dependence in the flow, led
Hazel and Pedley [4] to conclude that the effects of time-dependence on atherogenesis could
still be a consequence of the mean, as opposed to the time-varying, component of the wall
shear stress.

A vital, and as yet unresolved, step in the link between mechanics and disease is the
mechanism by which the wall shear stress is translated into a biological response. Indeed,
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Figure 1. Sketch of the model problem. A two-dimensional stagnation-point flow performs positional oscillations,
b(t), in the x1-direction and impinges onto the plane x2 = 0, which represents a model of an artery wall. A short
section of the wall of length L is injured and releases a chemical species into the blood.

it is unclear whether the shear stress is directly responsible for the progression of disease or
is merely a secondary variable that happens to be well-correlated with other processes. For
example, Caro et al. [1] proposed a mass-transfer-based mechanism for the development of
atherosclerosis. However, recent research has demonstrated that the endothelial cells, which
line the arterial walls, can act as force transducers, converting mechanical stresses into biolo-
gical events; see [5]. These findings lend support to the idea that the wall shear stress could
be the primary stimulus for disease. Nevertheless, it is still possible that passive mechanics,
rather than any active response on the part of the cells, may play a rôle in disease localisation.

In this paper, we shall investigate the latter hypothesis by extending the model of Hazel and
Pedley [4] to consider the effects of mass transport near an oscillating stagnation point. The
idea is to simulate a region in which the arterial wall is “damaged” and secretes a generic
chemical species that could activate and/or act as a chemoattractant for circulating blood
components. Examples of such chemicals include adenosine diphosphate and thrombaxane
A2, both of which can activate platelets; and platelet-activating factor, an ether phospholipid,
which can activate both platelets and leukocytes and acts as a chemoattractant for leukocytes;
see the review by Montrucchio et al. [6]. We assume that the cellular response is independent
of both position and wall shear stress and examine the effects of the location of the damaged
region, relative to the time-average position of the stagnation point, upon the local mass trans-
fer. If the mass-transport properties are significantly different in the vicinity of a stagnation
point then this mechanism, rather than any active response of the wall to shear stress, might
serve to explain the correlation between disease and regions of low wall shear stress.

2. The model

We consider the transport of a chemical species, with concentration field c∗(x∗
i , t

∗), in a highly
idealised two-dimensional flow field, where x∗

i , i = 1, 2 are Cartesian coordinates and t∗ is
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time. Throughout this paper, asterisks are used to distinguish dimensional quantities from
their dimensionless equivalents. An incompressible, Newtonian fluid of kinematic viscosity
ν occupies the half-plane x∗

2 > 0, −∞ < x∗
1 < ∞ and an unsteady, two-dimensional

stagnation-point flow impinges onto a plane, impermeable wall at x∗
2 = 0; see Figure 1. The

inviscid, far-field (x∗
2 → ∞) velocity field is given by

u∗
1 = A(t∗) (x∗

1 − b∗(t∗)) and u∗
2 = −A(t∗) x∗

2 , (1)

where u∗
i is the velocity component in the x∗

i -direction. Here, the strength of the stagnation-
point flow varies sinusoidally in time, t∗, about a mean value A0 with relative amplitude
α

A(t∗) = A0
(
1 + α sin

(
2πt∗/T

))
. (2)

Additionally, the location of the stagnation point oscillates about a mean position x∗
1 = b∗

0
with amplitude b∗

1

b∗(t∗) = b∗
0 + b∗

1 sin
(
2πt∗/T + φ

)
. (3)

We assume that the period, T , of the two oscillations is the same, as might be expected in
the cardiovascular system, but allow for a phase difference, φ. Provided that the period of the
oscillation is sufficiently large, there is a quasi-steady velocity boundary layer of thickness
δstag = O(

√
ν/A) near the wall, in which the velocity is given by

u∗
1 = A(t∗) (x∗

1 − b∗(t∗)) f ′
(

x∗
2

√
A(t∗)

ν

)
and u∗

2 = −√
νA(t∗) f

(
x∗

2

√
A(t∗)

ν

)
, (4)

where f is a solution of the ordinary differential equation

f ′′′ + ff ′′ + 1 − f ′2 = 0 (5)

with the boundary conditions f (0) = f ′(0) = 0 and f ′(∞) = 1; see, e.g., [7, pp. 152–157].
The diffusivity, D, of thrombogenic factors in blood is generally rather small, leading to

large values of the Schmidt number, Sc ≡ ν/D, and it follows that the concentration boundary
layer will be much thinner than the stagnation-point boundary layer. We therefore approximate
the velocity field within the concentration boundary layer by linearising (4) for small Y =
x∗

2

√
A(t∗)/ν, giving

u∗
1 = A

3/2
0

ν1/2
f

′′
(0)(1 + α sin(2πt∗/T ))3/2(x∗

1 − b∗(t∗))x∗
2 , (6a)

u∗
2 = −1

2

A
3/2
0

ν1/2
f

′′
(0)(1 + α sin(2πt∗/T ))3/2x∗2

2 , (6b)

where f ′′(0) ≈ 1·23259 [7, p. 157].
We choose the coordinate system such that the region of injury is located in a strip of length

L, centred at the origin. The most appropriate wall boundary condition is probably a mixed
condition of the form

a1c
∗ + a2

∂c∗

∂x∗
2

= a3, (7)
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but the choice of the coefficients ai is far from obvious. A first attempt is to assume that
the concentration is fixed over the damaged region and that the undamaged region remains
passive and impermeable to the chemical: i.e., c∗ ≡ c0 for x∗

2 = 0, −L/2 < x∗
1 < L/2 and

∂c∗/∂x∗
2 = 0 otherwise. This assumption corresponds to the case in which all the wall binding

sites for the chemical are occupied and the reaction kinetics are sufficiently fast that any empty
sites are reoccupied instantly. Far away from the strip the concentration approaches a uniform
background level, c∗ → c∞ as x∗

2 → ∞.
We non-dimensionalise by letting x∗

i = xi(L/2), b∗ = b(L/2), t∗ = tT , c∗ = c∞ +
c(c0 − c∞) and u∗ = U0u, where U0 is the appropriate scale for the quasi-steady flow in the
linearised stagnation-point boundary layer (6a,b),

U0 = A
3/2
0 f ′′(0)L2

4ν1/2
. (8)

In this non-dimensionalisation, the advection-diffusion equation, which governs the concen-
tration of the chemical species, becomes

Pe0

(
St

∂c

∂t
+ u1

∂c

∂x1
+ u2

∂c

∂x2

)
= ∂2c

∂x2
1

+ ∂2c

∂x2
2

, (9)

where

u1 = (1 + α sin(2πt))3/2(x1 − b(t))x2 and u2 = −1

2
(1 + α sin(2πt))3/2x2

2 , (10)

and the boundary conditions are

c = 1 for x2 = 0 and |x1| < 1, (11a)
∂c

∂x2
= 0 for x2 = 0 and |x1| > 1, (11b)

c → 0 as x2 → ∞. (11c)

The Péclet number, Pe0, reflects the ratio of the time-scales for advective and diffusive trans-
port, whereas the Strouhal number, St, is the ratio of the time-scale for advective transport to
the period of the stagnation-point oscillations:

Pe0 ≡ U0L

2D
= A

3/2
0 f ′′(0)L3

8Dν1/2
and St ≡ L

2U0T
= 2ν1/2

T A
3/2
0 f ′′(0)L

. (12)

The aim of the analysis is to determine the concentration field c(xi, t) and the total mass
flux from the strip into the blood stream, Q∗ = −D

∫ L/2
−L/2 ∂c∗/∂x∗

2 dx∗
1 . A dimensionless form

of the mass flux is given by the Sherwood number

Sh = Q∗

D(c0 − c∞)
= −

∫ 1

−1

∂c

∂x2
dx1, (13)

and we denote its long-time average by Sh, where, given any function, F(t),

F ≡ lim
τ→∞

∫ τ+1

τ

F (t) dt. (14)
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For later reference we note that the dimensionless wall shear stress is given by

τ(t, x1) = τ ∗(t∗, x∗
1 )

2µU0/L
= ∂u1

∂x2
= (1 + α sin(2πt))3/2(x1 − b(t)), (15)

and the spatially-averaged wall shear stress over the strip is

τav(t) = 1

2

∫ 1

−1
τ(t, x1) dx1 = −b(t) (1 + α sin(2πt))3/2. (16)

Furthermore, the x1-position at which the time-averaged wall shear stress is zero is given by

xτ=0
1 = b(t)(1 + α sin(2πt))3/2

(1 + α sin(2πt))3/2
= −τav

(1 + α sin(2πt))3/2
= b0 + b1F (α) cos(φ), (17)

where F (α) may be expressed in terms of elliptic integrals.

3. Analysis

3.1. QUASI-STEADY ANALYTIC APPROXIMATIONS

In the limit St → 0, the solution becomes quasi-steady and c(xi, t) is given, to leading order,
by the steady solution corresponding to the instantaneous values of the stagnation-point offset,
b(t), and the Péclet number, Pe = Pe0 (1 + α sin(2πt))(3/2). We further assume that Pe is
sufficiently large that we may neglect horizontal diffusion – a boundary-layer approximation.

3.1.1. Pe � 1 and |b| 	 1
Firstly, we consider the case in which the stagnation point is located near the centre of the
strip, |b| 	 1. As the length of the strip increases, L → ∞ or equivalently Pe→ ∞, we
expect the concentration field to become independent of x1, apart from small regions near the
ends of the strip. In this case, the governing equation (9) reduces to an ordinary differential
equation

d2c

dζ 2
+ 3ζ 2 dc

dζ
= 0, (18)

where the rescaling x2 = (Pe/6)−1/3ζ has been used to eliminate the Péclet number. The
solution, subject to the boundary conditions

c(0) = 1 and c(∞) = 0, (19)

is given by

c(ζ ) = 1 − 1

	(4/3)

∫ ζ

0
e−κ3

dκ. (20)

Hence, the dimensionless flux over the strip is

Sh|b|	1 = −
(

Pe

6

)1/3 ∫ 1

−1

dc

dζ

∣∣∣∣
ζ=0

dx1 = 2

	(4/3)

(
Pe

6

)1/3

≈ 1·2335 Pe1/3. (21)
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3.1.2. Pe � 1 and |b| � 1
If the stagnation point is far away from the strip, |b| � 1 (without loss of generality we shall
assume that b > 0), we expect the behaviour to be similar to that of a uniform shear flow
over the strip. We introduce a coordinate X measured from the upstream end of the strip,
x1 = 1 − X, and rescale the transverse coordinate by x2 = b−1/3η. The governing equation
(9) becomes

Pe η
∂c

∂X
= ∂2c

∂η2
+ O(b−2/3). (22)

In the limit, b → ∞, Equation (22) is indeed equivalent to that derived in Levêque’s uniform
shear theory [8]. Following Levêque’s analysis [8] we introduce the similarity variable

ζ =
(

1

9

)1/3

η X−1/3 Pe1/3, (23)

whereupon (22) becomes (18), again subject to the boundary conditions (19). Thus, (20) is
also the solution for the present problem, but here the flux is given by

∂c

∂x2

∣∣∣∣
x2=0

= − 1

	(4/3)

(
b Pe

9

)1/3

(1 − x1)
−1/3. (24)

The total flux is

Sh|b|�1 = −
∫ 1

−1

∂c

∂x2

∣∣∣∣
x2=0

dx1 = 1

	(4/3)

(
3

2

)1/3

(|b| Pe)1/3 ≈ 1·2819 (|b| Pe)1/3, (25)

where we have generalised the result to include the case b < 0. Recalling that Pe = Pe0(1 +
α sin(2πt))3/2 > 0, Equation (25) demonstrates that the mass flux is proportional to the
instantaneous value of the cube-root of the spatially-averaged wall shear stress over the strip,
|τav|1/3, see Equation (16), as in the uniform shear theory.

3.2. LARGE-STROUHAL-NUMBER ASYMPTOTIC EXPANSION

At finite Strouhal numbers, the time-derivative in the governing Equation (9) can no longer be
neglected, and we now derive an asymptotic approximation for the time-periodic solutions in
the limit St → ∞. We first consider the case in which the stagnation point is always located at
a large distance from the strip. In terms of the coordinate X = 1−x1 and the steady boundary-
layer similarity variable ζ = [Pe0 b0/(9X)]1/3x2, introduced in Section 3.1.2, Equation (9)
becomes(

9X

b0

)2/3

Pe1/3
0 St

∂c

∂t
= ∂2c

∂ζ 2
+ �(t)

{
3ζ 2 ∂c

∂ζ
− 9Xζ

∂c

∂X

}
+ O(X/b0) + O(Pe−2/3

0 ), (26)

where

�(t) = (1 + α sin(2πt))(3/2)(1 + (b1/b0) sin(2πt + φ)). (27)

It is apparent, that the dimensionless combination

χ =
(

9X

b0

)2/3

Pe1/3
0 St,
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governs the relative importance of time-dependence in the problem, with χ → ∞ being the
limit of high Strouhal number. As χ → ∞, the highest-order spatial derivatives in Equa-
tion (26) become small compared to the time derivative and we use the method of matched
asymptotic expansions to investigate this singular limit. The appropriate inner solution must
represent a balance between the highest-order spatial derivative and the time-derivative and
the inner variable is thus

ξ = χ1/2ζ = (Pe0 St)1/2x2 = x∗
2/

√
T D, (28)

which represents a rescaling of the wall-normal coordinate on the thickness,
√

T D, of a
concentration “Stokes” layer. The following analysis closely follows that of Pedley [9], the
difference being that he used the simpler function �(t) = 1 + α sin(2πt).

3.2.1. Outer solution
In the outer region, we recast Equation (9) in terms of the variables (χ, ζ ) to obtain

∂c

∂t
= χ−1

[
∂2c

∂ζ 2
+ �(t)

{
3ζ 2 ∂c

∂ζ
− 6χζ

∂c

∂χ

}]
, (29)

where we assume that Pe0 � 1, b0 � 1 and �(t) > 0. The latter condition requires that α <

1, b1 < b0; if these conditions are violated then �(t) passes through zero during the cycle
and at these instants the advective terms become negligible causing the present approximation
to break down. The boundary conditions are that c → 0 as ζ → ∞ and that the solution must
match onto the inner solution as ζ → 0. We pose the series expansion

c =
∞∑

n=0

χ−n/2c̃n(ζ, t),

and after substitution into Equation (29) and equating like powers of χ , the first three equations
are:

∂c̃0

∂t
= 0,

∂c̃1

∂t
= 0, and

∂c̃2

∂t
= ∂2c̃0

∂ζ 2
+ �(t) 3ζ 2 ∂c̃0

∂ζ
. (30)

The first equation implies that c̃0 is a function of ζ only and the secularity condition for c̃2

further implies that∫ 1

0

[
∂2c̃0

∂ζ 2
+ �(t) 3ζ 2 ∂c̃0

∂ζ

]
dt = ∂2c̃0

∂ζ 2
+

∫ 1

0
�(t)dt 3ζ 2 ∂c̃0

∂ζ
= 0, (31)

which is, yet again, Equation (18), after a suitable change of variables. Further, c̃0 must satisfy
the boundary condition at infinity and the additional condition that c must approach the steady
solution when α = b1 = 0; hence,

c̃0 = (1 + a0 g(α, b1, φ))

1 − 1

	(4/3)

∫ ζ �
1
3

0
e−κ3

dκ

 ,

where � = ∫ 1
0 �(t)dt , a0 is an unknown constant and g(α, b1, φ) is an unknown function that

must be zero when α = b1 = 0.
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3.2.2. Inner solution
In terms of the inner variables (χ, ξ), Equation (9) becomes

∂2c

∂ξ 2
− ∂c

∂t
= χ−1/2 �(t) 6ξ

∂c

∂χ
, (32)

again assuming that Pe0 � 1, |b| � 1 and α < 1. The boundary conditions are that c = 1
at ξ = 0 and that the solution matches to the outer solution, as ξ → ∞. We pose the series
expansion

c =
∞∑

n=0

χ−n/2ĉn(ξ, t),

and the first two equations are

∂2ĉ0

∂ξ 2
− ∂ĉ0

∂t
= 0, and

∂2ĉ1

∂ξ 2
− ∂ĉ1

∂t
= 0. (33)

At leading order, the boundary conditions are

ĉ0(0, t) = 1, and ĉ0(∞, t) = 1 + a0g(α, b1, φ).

Equation (33a) is an unsteady heat equation and does not have any non-trivial time-periodic
solutions. For a time-periodic solution, therefore, a0 = 0, in which case the leading order
inner solution is a constant, ĉ0 ≡ 1. Hence, in order to calculate the mass transfer at leading
order, we need the next order term in the inner expansion. The boundary conditions are

ĉ1(0, t) = 0, and ĉ1(ξ, t) ∼ −�
1/3

/	(4/3)ξ + c̃1(0) as ξ → ∞.

Again, only the trivial time-periodic solution is possible, in which case c̃1(0) ≡ 0 and

ĉ1 = −�
1/3

/	(4/3)ξ.

The leading-order concentration gradient at the wall is then

∂c

∂x2

∣∣∣∣
x2=0

=
(

b0 Pe0

9

)1/3

(1 − x1)
−1/3χ1/2 ∂c

∂ξ

∣∣∣∣
ξ=0

= − �
1/3

	(4/3)

(
b0 Pe0

9

)1/3

(1 − x1)
−1/3. (34)

It follows that in the limit St → ∞, |b| � 1, the concentration near the wall becomes
independent of time and the instantaneous and time-average mass transfer is

Sh|b|�1 = Sh|b|�1 ≈ 1·2819 (|b0�| Pe0)
1/3 = 1·2819 (|τav| Pe0)

1/3. (35)

A similar analysis carries through in the case when |b| 	 1 and, by analogy with the quasi-
steady results, Section 3.1, the leading order contribution to the mass transfer is

Sh|b|	1 = Sh|b|	1 ≈ 1·2335
(

(1 + α sin(2πt))3/2 Pe0

)1/3
. (36)
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3.3. NUMERICAL SOLUTION

The analysis presented above applies in the limits of large and small Strouhal numbers. For
intermediate values of St, Equation (9) must be solved numerically. For this purpose we ap-
proximate the upper half plane by the finite rectangle −L1 ≤ x1 ≤ L1, 0 ≤ x2 ≤ L2 and apply
the far-field boundary condition (11c) at x2 = L2. We apply the wall boundary conditions
(11a,11b) at x2 = 0 and impose ∂c/∂n = 0 along the edges x1 = ±L1, corresponding to
passive advection out of the domain. The domain is decomposed into nine-node quadrilateral
finite elements, with a greater concentration of elements near the wall and the ends of the
strip. There is a square-root singularity in the flux at the ends of the strip (see, e.g., [10 ,
Appendix A]), which cannot be resolved using the standard quadratic basis functions. We
therefore augment the finite-element basis by two functions which capture the appropriate
singular behaviour, and approximate the concentration field, c(xi, t), by

c = c(FEM) + Ĉ1(t) f1(r1, ϕ1) + Ĉ2(t) f2(r2, ϕ2), where c(FEM) =
N∑

j=1

Cj(t)ψj . (37)

Here ψj are piecewise bi-quadratic finite-element shape functions, with amplitudes Cj(t), j =
1, ..., N ; ri and ϕi (i = 1, 2) are polar coordinates, centred at the two endpoints of the strip
(at x1 = −1 and x1 = +1, respectively), and Ĉi(t) are the amplitudes of the two additional
functions

f1 = 1 − √
r1 sin(ϕ1/2) and f2 = 1 − √

r2 cos(ϕ2/2). (38)

The finite-element coefficients, Cj(t), not imposed by the boundary conditions are determined
from the weak form of the governing Equation (9),

fj =
∫ L1

−L1

∫ L2

0

(
Pe0

(
St

∂c

∂t
+ uk

∂c

∂xk

)
ψj + ∂c

∂xk

∂ψj

∂xk

)
dx1dx2 = 0, (39)

where the Einstein summation convention is used and the dummy indices take the values
k = 1, 2. Two additional equations are required to determine the amplitudes Ĉi(t) and we
imposed the conditions

∂c(FEM)

∂x2
= 0 at x2 = 0 and x1 = ±1, (40)

ensuring that the part of the solution approximated by c(FEM) remains smooth throughout
the domain. The time derivative was discretised by a second-order backward-Euler (BDF2)
scheme and the resulting large, sparse system of algebraic equations that arises at every time
step was solved using the frontal solver MA42 from the HSL2000 library.

The thickness of the concentration boundary layer changes with the Péclet number and
we altered the height of the computational domain accordingly by setting L2 = min(L̂2,

L̂2 Pe−1/3
0 ), where L̂2 = 7 provided an adequate height for Pe0 = 10; see Figure 2. The

half-width of the computational domain was always L1 = 20. The standard spatial resolution
involved approximately 43,000 degrees of freedom. Typically, a time-step of �t = 6·25×10−3

was used in the BDF2 scheme and Sh was determined by continuing the computation until
Sh changed by less than 0·01% between two subsequent periods of oscillation. To validate
the code, we postulated a solution for the concentration field c(xi, t) and made this an exact
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solution of the governing equation by adding appropriate source terms to (9) and (39). Further
validation was provided by comparisons with the analytic approximations derived above. Fi-
nally, we confirmed the independence of the results on the spatial discretisation, the time step
and the dimensions of the computational domain, L1 and L2.

4. Physiological parameter values

The period of the stagnation-point oscillation is determined by the heart rate and we take T ≈
0·83 sec, corresponding to a heart rate of 50 beats per minute. For a representative diffusivity
of D = 3 × 10−10 m2/sec (an estimated value for ADP; see [11]) and the viscosity of blood,
ν ≈ 4 × 10−6 m2/sec, we obtain a Schmidt number of Sc = 1·33 × 104. Hazel and Pedley [4]
surveyed measurements from a number of in vivo and in vitro physiological, stagnation-point
flows and provided estimates for the remaining flow parameters. In the available experiments,
the mean stagnation-point strength was found to lie in the range A0 ≈ 10 − 50 sec−1 and the
pulsatility of the flow was estimated to be α ≈ 0·5–0·6. The estimates for the phase angle
varied between φ = −130◦ and φ = −210◦. We are concerned with the early stages of
disease during which only a small section of the wall is damaged. We, therefore, choose a
length-scale of L = 3×10−4 m which is comparable to the length occupied by approximately
10 endothelial cells.

Even though many of the above estimates are very crude, a number of assumptions made
in the analysis appear to be justified. The Strouhal numbers are small, between 0·04 and 0·4,
and Hazel and Pedley [4] found that the use of the quasi-steady boundary-layer approximation
(4) was justified in this regime. Furthermore, the Schmidt number is large enough to justify
the linearisation of the velocity profile in (6a,b). The Péclet numbers corresponding to the
above estimates lie between 200 and 2500, which are sufficiently large for the high Péclet
number analysis to apply. Nevertheless, the small length-scales in the present problem lead
to relatively low values of the Péclet number, compared to those appropriate for macroscopic
mass transport in the arteries.

5. Results

Despite the extreme simplicity of our model, the mass transfer still depends on six non-
dimensional parameters: (i) the Strouhal number, St, (ii) the average Péclet number, Pe0,
(iii) the flow pulsatility, α, (iv) the average stagnation-point position, b0, (v) the amplitude
of positional oscillation, b1, and (vi) the phase angle, φ. We shall illustrate the effects of these
parameters in a sequence of increasingly complex scenarios, beginning with the simplest case:
steady stagnation-point flow. In all cases, we shall focus on how the location of the damaged
region, relative to the average stagnation-point position, b0, affects the mass transfer.

5.1. STEADY FLOWS

In steady stagnation-point flow St = α = b1 = 0, and only two parameters govern the
problem, Pe and b = b0. Figure 2 shows the concentration profiles at Pe = 10 and Pe = 1500,
for two different stagnation-point locations, b = 0 and b = −5. The main effect of increasing
the Péclet number is to cause a relative increase in the convection towards the wall, confining
the region of high concentration to a thin layer and inducing a high concentration gradient
at the surface of the strip. If b = 0, the stagnation point is located at the centre of the strip
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Figure 2. Steady concentration profiles, c(x1, x2), for b = 0 (left column) and b = −5 (right column), Pe = 10
(top row) and Pe = 1500 (bottom row). Note the different ranges of the x2-axes.

and the solute is transported away symmetrically. If |b| > 1, the tangential flow above the
strip is unidirectional and its magnitude increases with |b|, see (10). Thus, the layer of high
concentration becomes strongly skewed in the direction of the dominant tangential velocity,
causing the concentration gradient at the strip to increase with |b|.

Figure 3 illustrates the increase in dimensionless mass flux, Sh, with stagnation-point posi-
tion, b, and Péclet number, Pe. The computational results (solid lines) are shown, together with
the asymptotic approximations (21) and (25) for small and large b. The agreement between
the numerical results and the asymptotic predictions, in their appropriate regions of validity,
is very good and a global approximation for the dimensionless mass flux can be obtained by
patching together the two asymptotic expressions,

Shcomp(b, Pe) =
{

Sh|b|	1 = 1·2335 Pe1/3 for |b| < 0·891,
Sh|b|�1 = 1·2819 (|b| Pe)1/3 for |b| ≥ 0·891.

(41)

5.2. UNSTEADY FLOWS

In this section, we shall investigate the effects of time-dependence on both the instantan-
eous mass transfer, Sh(t), and its time average, Sh. Initially, we shall consider only oscil-
lations in the incoming flow, Section 5.2.1. Next, we examine the effects of oscillations in
the stagnation-point location, in the case when the incoming velocity is steady, Section 5.2.2.
Finally, we consider the complete problem of a stagnation-point oscillating in position and
with time-varying strength, Section 5.2.3.



326 M. Heil and A.L. Hazel

Figure 3. Non-dimensional mass flux, Sh, versus stagnation point offset, b, for steady flow.
Pe = 500, 1000, 1500, 2000, 2500, increasing in the direction of the arrow. Solid lines: computational
results; broken lines: asymptotic approximations for small b (dotted) and large b (dashed).

5.2.1. Flow pulsatility
To investigate the effect of flow pulsatility we set b1 = 0 and chose α = 0·6 as a represent-
ative value, see Section 4. The lower graph in Figure 4 shows the strength of the incoming
stagnation-point flow, as measured by the ratio Pe/Pe0 = (1 + α sin(2πt))(3/2). The cor-
responding instantaneous mass transfer, Sh(t), is shown on the upper graph for St = 0
(quasi-steady flow), St = 0·04, St = 0·4, and for two stagnation-point locations, b0 = 3,
b0 = 20.

For St = 0, the analysis of Section 3.1 applies and the instantaneous mass transfer is
well-approximated by

Sh(t) = Shcomp(b0, Pe0) (1 + α sin(2πt))(1/2), (42)

shown as the dotted lines in the upper graph of Figure 4. If St �= 0, the introduction of
“thermal” inertia causes a reduction in the amplitude of Sh(t) and introduces a phase lag
between Sh(t) and the instantaneous stagnation-point strength, or equivalently the wall shear
stress. As in the steady case, Section 5.1, moving the stagnation point away from the strip,
increasing b0, causes an increase in tangential advection and hence an increase in the mass
transfer.

The variation of the average mass transfer, Sh, with the location of the stagnation point, b0,
is shown in Figure 5. For St = 0, Sh is slightly lower than for the corresponding steady case.
The explanation for this reduction follows from the analytic solution (42), indicating that the
mass transfer varies with (1+α sin(2πt))(1/2), which has a time-average slightly less than one
(0·975 for α = 0·6). An increase in St leads to a slight increase in the average mass transfer
compared to the steady case; a result following from the large-Strouhal number analysis of

Section 3.2, which predicts that ShSt�1/ShSt=0 =
(
�(t)

)1/3 = 1·022 for α = 0·6.
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Figure 4. Upper graph: Instantaneous mass transfer Sh(t) for a pulsatile stagnation point flow at two different
offsets (b0 = 3 and b0 = 20), Pe0 = 1500, α = 0·6. Short-dashed line: St = 0; long-dashed line: St = 0·04;
solid line: St = 0·4; dotted line: the composite approximation (42). The latter is virtually indistinguishable
from the computational results for St = 0. Lower graph: Corresponding strength of the stagnation point flow,
Pe/Pe0 = (1 + α sin(2πt))(3/2).

Figure 5. Average mass transfer Sh for a pulsatile stagnation point flow, Pe0 = 1500, α = 0·6. Dashed line:
St = 0; solid line: St = 0·4; dash-dotted line: steady result (α = 0).
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Figure 6. Upper graphs: Instantaneous mass transfer Sh(t) for a constant-strength stagnation point flow (α = 0)
undergoing positional oscillations about b0 = −2·1 (left) and b0 = −13·28 (right). Pe0 = 1500, b1 = 7·5.
Short-dashed lines: St = 0; long-dashed lines: St = 0·04; solid lines: St = 0·4; dotted lines: quasi-steady
approximation (41). Lower graphs: The corresponding position of the stagnation point, b(t). Note the different
scales on the vertical axes.

Rescaling the results for St = 0 by 1/0·975 and St = 0·4 by 1/1·022 collapses the data
onto the steady results with an error of less than 0·7% over the entire range of b0 considered
in Figure 5. Overall, however, the effect of pure flow pulsatility on the time-average mass
transfer is very small.

5.2.2. Stagnation point motion
We now consider steady stagnation-point flow, α = 0, but allow the location of the stagnation
point to oscillate in time, b1 �= 0. The lower graphs in Figure 6 show the location of the
stagnation point b(t) = b0 + b1 sin(2πt) for b1 = 7·5 and two different average positions,
b0 = −2·1 (left) and b0 = −13·28 (right). The corresponding variations in Sh(t) are shown
in the upper graphs for the quasi-steady case, St = 0, and for St = 0·04 and St = 0·4. Again,
when St = 0, the composite approximation (41), represented by the dotted line in Figure 6,
is very accurate and it follows that the instantaneous mass transfer increases with the absolute
value of the stagnation point location |b(t)|.

If St = 0 and if the stagnation point crosses the origin during the cycle, b1 > |b0|, Sh(t)

has two maxima per period, as can be seen in the left graphs in Figure 6. The maxima will,
in general, be unequal unless b0 = 0 in which case the stagnation point oscillates symmetric-
ally about the origin. The minimum mass flux occurs twice per period, when the stagnation
point crosses the origin. Hence Sh(t) appears similar to a ‘rectified’ harmonic oscillation with
non-zero mean. Throughout most of the cycle the instantaneous Sherwood number is greater
than the corresponding steady value (≈ 18·81); thus, the stagnation-point motion leads to a
significant increase in time-averaged mass flux in this regime. Furthermore, an increase in b1

will cause increases in the two maxima, while the minimum value of Sh remains the same.
Hence, for St = 0 and b1 > |b0|, increasing b1 causes a large increase in Sh, see Figure 7.
Conversely, for large values of b1, an increase in |b0| has only a modest effect on Sh because
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Figure 7. Average mass transfer Sh for a constant-strength stagnation point flow (α = 0) undergoing positional
oscillations. b1 = 7·5, Pe0 = 1500. Solid lines: computational results; dashed lines: the average based on the
quasi-steady approximation (41). When α = 0, the predictions from the quasi-steady model are identical to those
from the large Strouhal number analysis, (35) and (36).

the resulting increase in one maximum is approximately matched by the decrease in other,
provided that b1 remains greater than |b0|.

If |b0| > b1, then the stagnation point never crosses the origin and there is only one
maximum per period. In this case, moving the stagnation-point further from the origin causes a
noticeable increase in Sh. Indeed, Figure 7 demonstrates that for a fixed b1, the time-averaged
mass flux is approximately independent of b0, until b0 > b1 whereupon Sh begins to increase
with b0.

The above considerations all apply only to the quasi-steady results. If St > 0, “thermal”
inertia again causes a decrease in the amplitude of the oscillations in Sh(t) and introduces a
phase lag between the extrema of mass flux and the extrema of the stagnation-point motion,
equivalent to extrema of wall shear stress on the strip. As a result, the instantaneous (and thus
also the time-averaged) mass flux remains much closer to the steady mass flux corresponding
to the average stagnation point position. In fact, because α = 0, the predictions of the large
Strouhal number asymptotic analysis, (35) and (36), are identical to those of the quasi-steady
approximation, (41).

Figures 6 and 7 show that the effects of “thermal” inertia already manifest themselves
at a relatively small Strouhal number of St = 0·04. Furthermore, Figure 7 demonstrates
that at St = 0·4, the large Strouhal number analysis provides excellent predictions for the
time-average mass flux Sh. This is because the relative importance of “thermal” inertia is
determined by the parameter χ ∝ Pe1/3

0 St, see Equation (26), which is large even at relatively
small values of St because Pe0 � 1.

We, therefore, conclude that for moderate values of St, the time-average mass flux de-
pends most strongly on the average position of the stagnation point with the amplitude of the
positional oscillations having a much smaller effect.

5.2.3. Flow pulsatility combined with stagnation point motion
Finally, we consider the combined effects of flow pulsatility and stagnation-point motion,
both α �= 0 and b1 �= 0. Figure 8 shows the instantaneous mass flux, Sh(t), the stagnation-
point location, b(t) and the relative stagnation-point strength Pe/Pe0 plotted against time for
St = 0, 0·04 and 0·4. For St = 0 there is a local minimum in Sh(t) when the stagnation point
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Figure 8. Instantaneous mass transfer Sh(t) for St = 0, 0·04, 0·4, stagnation point position b(t) and strength of
stagnation point flow for α = 0·6, b0 = −3·95, b1 = 7·5 and Pe0 = 1500. Solid lines: φ = 0◦; dashed lines:
φ = 45◦; dash-dotted lines: φ = 90◦; dash-dot-dotted lines: φ = 135◦.

Figure 9. Average mass transfer Sh for α = 0·6, b1 = 7·5 and Pe0 = 1500. Solid lines: computational results;
dashed lines in graph for St = 0: average based on the quasi-steady approximation (41); broken lines in graph for
St = 0·4: average based on the large Strouhal number approximations (35) and (36). φ = 0◦, 45◦, 90◦, 135◦ and
180◦, increasing in the direction of the arrow.
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Figure 10. The distance of the centre of the positional oscillations from the point of zero mean wall shear stress, d,
(solid line) and the average stagnation point position b0(Shmin) for which the mass transfer is minimised (broken
lines). Short-dashed line: St = 0; long-dashed line: St = 0·04; dash-dotted line: St = 0·4. α = 0·6, b1 = 7·5 and
Pe0 = 1500.

crosses the origin, c.f. Section 5.2.2. The value of the mass flux at this point is determined by
the instantaneous strength of the stagnation-point flow and, therefore, depends crucially upon
the phase difference, φ, between the two oscillations.

For the parameters used in Figure 8, when St = 0 and φ = 0, the fluctuations in mass flux
are relatively small (16·11 < Sh(t) < 28·37). At φ = 135◦, the amplitude of the variations
in mass flux (9·41 < Sh(t) < 40·62) are about 2.5 times greater than for φ = 0◦. In general,
the amplitude of the variations in mass flux is greatest when the maximum velocity occurs at
the maximum value of |b(t)| and the amplitude is smallest when the minimum velocity occurs
at that point. Furthermore, for a given average stagnation-point location, b0, the time-average
mass flux Sh is smallest if the phase angle, φ is such that the minimum incoming velocity
occurs at the maximum of |b| (when the stagnation point is furthest from the origin), see
Figure 9. Nonetheless, Figure 9 demonstrates that, as in the case of pure positional oscillations,
if St = 0, Sh has only a weak dependence on the average position b0 when |b0| < b1, but
increases with b0 once |b0| > b1. Note that Sh is symmetric in b0 when φ = 90◦ because
in that case the incoming velocity has the same value at both the extreme stagnation-point
positions.

Once again, the main effect of the “thermal” inertia introduced at finite Strouhal number is
to limit the amplitude of the fluctuations in mass flux, see Figure 8, and to introduce a phase
lag into the mass flux relative to the position of the stagnation point. A consequence of the
amplitude limitation is that for a given average stagnation-point location, b0, the average mass
flux, Sh becomes very sensitive to the phase angle, see Figure 9. Figure 9 also shows that,
for finite values of the Strouhal number, there is a sharply-defined minimum in mass transfer,
whose precise position depends upon φ.
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At St = 0·4, the large Strouhal number analysis again provides an excellent approxima-
tion for Sh(b0), despite the fact that, strictly speaking, the approximation breaks down when
b1 > |b0|. It then follows from Equation (35) that the minimum mean mass transfer might
be expected to occur when |τav| = 0, which is equivalent to xτ=0

1 = 0; see Equation (17).
Hence, we expect that the minimum mean mass transfer occurs when the centre of the strip is
coincident with the point of zero mean wall shear stress.

This conjecture is examined in Figure 10 in which the solid line shows the distance of
the point of zero mean wall shear stress from the centre of the positional oscillations, d =
b0 − xτ=0

1 = −b1F (α) cos(φ) where F (α) = 0·416 for α = 0·6. The broken lines show the
average stagnation point position at which the mass transfer is minimised, b0(Shmin). At large
values of the Strouhal number, d and b0(Shmin) coincide, indicating that at the minimum value
of Sh we have xτ=0

1 = 0 and, as expected, the centre of the strip is located at the point of zero
mean wall shear stress. This is in contrast to the quasi-steady predictions, where the minimum
mean mass transfer can occur when the point of zero mean wall shear stress is located beyond
the ends of the strip.

6. Discussion and concluding remarks

We have considered the mass transfer from a finite-length strip near a stagnation point that
oscillates in both incoming velocity and location on a plane wall. The system is a highly
idealised model of the mass transport that may occur when a short section of the arterial wall
is damaged near regions of low wall shear stress. In particular, we wished to examine whether
the location of the damaged region, relative to the time-average position of the stagnation
point, would have any influence on the mass transport assuming a uniform (passive) cellular
response to injury. Although the time history of the mass transfer can be very complex, we
found that its time average is well-approximated by asymptotic theories in the high and low
frequency limits. In the physiologically relevant parameter regime, the fluid flow is still quasi-
steady, yet the mass transfer displays genuine time-dependence and, indeed, the appropriate
asymptotic limit is that of high frequency.

In general, the mass transfer from the arterial wall to the fluid increases with the Péclet
number and is reduced in the vicinity of the stagnation point, as might be predicted from the
steady and quasi-steady theories for heat transfer from a finite-length heated strip in a uniform
shear flow, e.g. [8, 12].

For physiologically realistic parameter values, corresponding to large Péclet and moderate
Strouhal numbers, the oscillations in position and incoming velocity have a relatively weak
effect on the time-averaged mass transfer when taken separately. In concert, however, the
two oscillations can lead to a potent and strongly phase-dependent effect upon the time-
averaged mass transfer from the strip. There is a sharply defined minimum in mass transfer
when the centre of the strip is located at the point of zero mean wall shear stress. The exact
location of this minimum is strongly dependent upon the phase difference, φ, between the
two oscillations. Conversely, at very small values of the Strouhal number, the time-averaged
mass transfer is largely insensitive to the phase difference and also to the location of the strip
relative to the stagnation point, until the stagnation point no longer crosses the strip, at which
point the mass transfer increases.

As St → ∞, the mass transfer from the strip becomes completely time-independent. At
St = 0·4, which represents the upper limit of the physiologically relevant parameter regime,
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the time course of the mass transfer still exhibits considerable oscillations. The amplitude of
these oscillations can vary significantly as a function of φ, again illustrating the importance
of this parameter. The amplitude of the oscillations is smallest when the mean mass transfer
is low, indicating that the mass transfer when the centre of the strip is located at the point
of zero mean wall shear stress is approximately time-independent, as well as being strongly
reduced. This finding lends further support to the notion that time-dependent effects may not
be of direct importance in the development of arterial disease.

Although the model described in this paper is an extreme simplification of the situation
in vivo and applies only in the regions near stagnation points, the strong localisation effect is
expected to carry through to three dimensions and not to depend upon the precise details of the
boundary conditions at the wall. It is therefore hoped that the analysis of our simplified model
will aid the interpretation of data from numerical simulations in physiologically-realistic
geometries.

The strong localisation effect may help to explain the focal nature of arterial disease and its
correlation with regions of low wall shear stress. The low mass transfer from the wall in these
regions will cause fewer circulating blood components to be activated and hence the time taken
for the injury to be repaired will increase. If we assume that the arterial wall is regularly subject
to minor damage, the slower repair time in regions of low wall shear stress could lead to a more
rapid progression of arterial diseases in these regions. Furthermore, any chemicals secreted by
the cells are likely to have more than one function. For example, platelet-activating factor has
been shown to increase the vascular permeability and to cause changes in the cytoskeleton
of cultured endothelial cells [13]. Thus, if the chemical concentration remains relatively high
when the region of damage is near a stagnation point, the cell function could be significantly
altered in these regions.

Throughout this paper, we have assumed that the cellular response is independent of the
wall shear stress, a questionable assumption in the light of experimental evidence [5]. In their
theoretical study, David et al. [14] found that it was necessary to include a shear-dependent
reaction rate at the wall in order to reproduce experimental results for platelet deposition
in stagnation-point flow. Indeed, it is possible that the stimulus for the “injury” to the cells
is low wall shear stress itself. For example, the baseline permeability of endothelial cells
in vivo has been shown to be inversely correlated with the time-averaged wall shear stress
[15]. If this is the case, then the low-wall-shear stress stimulus coupled to the localisation
effect described above will lead to a strong positive feedback mechanism and a highly focal
biological response.

In conclusion, there is a significant and highly focal reduction in time-average mass trans-
port when a chemical source, representing a short, damaged section of the arterial wall,
coincides with the point of zero mean wall shear stress that occurs near an oscillating stagna-
tion point. Thus, the focal nature of arterial disease may be in part explained by this localised
mass transfer response, rather than any activity on the part of the endothelial cells. However, if
the stimulus that causes the damage is itself low wall shear stress, the coupling of the stimulus
to the localisation of the mass transfer response will lead to a more tightly focussed biological
response than either mechanism acting alone.
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